Laboratory 1

(Due date: 002/003: September 24th, 004: September 25th, 005: September 26th)

OBJECTIVES

- ✓ Introduce VHDL Coding for FPGAs.
- Learn to write testbenches in VHDL.
- ✓ Learn the Xilinx FPGA Design Flow with the Vivado HL: Synthesis, Simulation, and Bitstream Generation.
- Learn how to assign FPGA I/O pins and download the bitstream on the NexysTM-4 DDR Artix-7 FPGA Board.

VHDL CODING

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

NEXYSTM-4 DDR ARTIX-7 FPGA BOARD SETUP

- The Nexys-4 DDR Board can receive power from the Digilent USB-JTAG Port (J6). Connect your Board to a computer via the USB cable. If it does not turn on, connect the power supply of the Board.
- Nexys-4 DDR documentation: Available in class website.

FIRST ACTIVITY (100/100)

PROBLEM: A lock is opened $(f = 1)$ only for four combination of switches: 1011 or 0010), where '1' represents the ON state of the lock and '0' the OFF state.	1, 1010, 1110,	a	bo	e d	f
of 0010), where I represents the ON state of the lock and 0 the OFF state.	•		0		
✓ Complete the truth table for this circuit:		_	_ :	0	
		0	0 1	. 1	
		0	_ :	0	
✓ Derive (simplify if possible) the Boolean expression:		0	_ `	. 0	
f =		0	1 1	. 1	
			0 (0 (0	
				. 0	
		1	0 1	. 1	
		1	_ `	0 1	
		1	1 1	. 0	
VIVADO DESIGN FLOW FOR EPGAs (follow this order strictly):		1	1 1	. 1	

- **VIVADO DESIGN FLOW FOR FPGAs (follow this order strictly):**
 - ✓ Create a new Vivado Project. Select the XC7A100T-1CSG324 Artix-7 FPGA device.
 - ✓ Write the VHDL code that implements the simplified Boolean expression. Synthesize your circuit (Run Synthesis).
 - ✓ Write the VHDL testbench to test every possible combination of the inputs.
 - ✓ Perform Functional Simulation (Run Simulation → Run Behavioral Simulation). **Demonstrate this to your TA.**
 - ✓ I/O Assignment: Create the XDC file.
 - Nexys-4 DDR Board: Use SWO, SW1, SW2, SW3 as inputs, and LEDO as the output. All I/Os are active high.
 - ✓ Implement your design (Run Implementation).
 - ✓ Do <u>Timing Simulation</u> (Run Simulation → Run Post-Implementation Timing Simulation). **Demonstrate this to your TA.**
 - ✓ Generate the bitstream file (Generate Bitstream).
 - ✓ Download the bitstream on the FPGA (Open Hardware Manager) and test. Demonstrate this to your TA.
- Submit (as a .zip file) the generated files: VHDL code, VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

TA signature:	 Date: _	
_		